1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
use crate::chaum_pedersen::{ChaumPedersen, GroupParams};
use crate::conversion::ByteConvertible;
use crate::rand::RandomGenerator;
use curve25519_dalek::ristretto::CompressedRistretto;
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::RistrettoPoint;
use rand::rngs::OsRng;
use std::error::Error;
/// A struct representing the Chaum-Pedersen protocol specialized for elliptic curve groups.
/// This protocol is used for demonstrating knowledge of a secret in a zero-knowledge manner.
/// The elliptic curve used in this implementation is based on Ristretto points.
pub struct Curve25519ChaumPedersen {}
/// Implementing the ChaumPedersen trait for EllipticCurveChaumPedersen.
impl ChaumPedersen for Curve25519ChaumPedersen {
/// Defines the type of the secret being proven. In this case, it is a scalar value.
type Secret = Scalar;
/// Defines the type of the commitment randomness used in the protocol.
/// This is a scalar value used during the commitment phase.
type CommitmentRandom = Scalar;
/// Defines the type of the response generated in the protocol.
/// This is a scalar value representing the participant's response in the protocol.
type Response = Scalar;
/// Defines the type of the challenge used in the protocol.
/// This is a scalar value representing the challenge posed during the protocol.
type Challenge = Scalar;
/// Defines the group parameters used in the protocol.
/// These parameters are based on Ristretto points, which provide a prime-order group on an elliptic curve.
type GroupParameters = GroupParams<RistrettoPoint>;
/// Defines the commitment parameters used in the protocol.
/// These are four Ristretto points representing the commitments and random commitments.
type CommitParameters = (RistrettoPoint, RistrettoPoint, RistrettoPoint, RistrettoPoint);
/// Calculate the commitment values for the Chaum-Pedersen protocol.
///
/// This method generates a random scalar and computes the commitment parameters
/// using the secret value and the group parameters.
///
/// # Arguments
/// * `params` - Reference to the group parameters used in the computation.
/// * `x` - Reference to the secret value.
///
/// # Returns
/// A tuple containing the commitment parameters and the commitment random value.
fn commitment(
params: &Self::GroupParameters, x: &Self::Secret,
) -> (Self::CommitParameters, Self::CommitmentRandom)
where
Self: Sized,
{
let y1 = params.g * x; // Calculate y1 = g * x.
let y2 = params.h * x; // Calculate y2 = h * x.
let mut rng = OsRng; // Create a random number generator.
let k = Scalar::random(&mut rng); // Generate a random scalar k.
let r1 = params.g * k; // Calculate r1 = g * k.
let r2 = params.h * k; // Calculate r2 = h * k.
((y1, y2, r1, r2), k) // Return the commitment parameters and random value.
}
/// Generate a random challenge for the Chaum-Pedersen protocol.
///
/// This method generates a random scalar value to be used as a challenge.
///
/// # Arguments
/// * `_` - Reference to the group parameters, not used in this implementation.
///
/// # Returns
/// A random scalar value to be used as a challenge.
fn challenge(_: &GroupParams<RistrettoPoint>) -> Self::Challenge {
let mut rng = OsRng; // Create a random number generator.
Scalar::random(&mut rng) // Generate and return a random scalar as the challenge.
}
/// Calculate the response for the Chaum-Pedersen protocol.
///
/// This method computes the response using the commitment random value,
/// the challenge, and the secret value.
///
/// # Arguments
/// * `_` - Reference to the group parameters, not used in this implementation.
/// * `k` - Reference to the commitment random value.
/// * `c` - Reference to the challenge.
/// * `x` - Reference to the secret value.
///
/// # Returns
/// The response for the Chaum-Pedersen protocol.
fn challenge_response(
_: &Self::GroupParameters, k: &Self::CommitmentRandom, c: &Self::Challenge,
x: &Self::Secret,
) -> Self::Response
where
Self: Sized,
{
k + (c * x) // Calculate and return the response as k + (c * x).
}
/// Verify the response for the Chaum-Pedersen protocol.
///
/// This method checks if the provided response, along with the challenge and
/// commitment parameters, satisfies the verification equations.
///
/// # Arguments
/// * `params` - Reference to the group parameters used in the verification.
/// * `s` - Reference to the response.
/// * `c` - Reference to the challenge.
/// * `cp` - Reference to the commitment parameters.
///
/// # Returns
/// `true` if the verification is successful, `false` otherwise.
fn verify(
params: &Self::GroupParameters, s: &Self::Response, c: &Self::Challenge,
cp: &Self::CommitParameters,
) -> bool {
// Deconstructing the commitment parameters tuple.
let (y1, y2, r1, r2) = cp;
// Verifying the proof by checking two equations.
(params.g * s == r1 + (y1 * c)) && (params.h * s == r2 + (y2 * c))
}
}
/// Implementation of `ByteConvertible` for `Scalar`.
///
/// This implementation provides methods to convert `Scalar` objects to and from
/// byte arrays. Scalars are fundamental in cryptographic operations and being able to
/// serialize and deserialize them is crucial.
impl ByteConvertible<Scalar> for Scalar {
fn convert_to(t: &Scalar) -> Vec<u8> {
t.to_bytes().to_vec()
}
fn convert_from(bytes: &[u8]) -> Result<Scalar, Box<dyn Error>> {
let array: [u8; 32] = bytes.try_into().map_err(|_| {
Box::new(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"Invalid bytes length for Scalar",
)) as Box<dyn Error>
})?;
Ok(Scalar::from_bytes_mod_order(array))
}
}
/// Implementation of `ByteConvertible` for `RistrettoPoint`.
///
/// This implementation provides methods to convert `RistrettoPoint` objects to and from
/// byte arrays. It uses the compression and decompression features of the Ristretto group
/// to achieve this.
impl ByteConvertible<RistrettoPoint> for RistrettoPoint {
fn convert_to(t: &RistrettoPoint) -> Vec<u8> {
t.compress().to_bytes().to_vec()
}
fn convert_from(bytes: &[u8]) -> Result<RistrettoPoint, Box<dyn Error>> {
let compressed = CompressedRistretto::from_slice(bytes);
compressed?.decompress().ok_or_else(|| {
Box::new(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"Failed to decompress RistrettoPoint",
)) as Box<dyn Error>
})
}
}
// Implementation of `RandomGenerator` trait for `Scalar`.
impl RandomGenerator<Scalar> for Scalar {
/// Generates a random `Scalar`.
///
/// # Returns
/// A `Result` containing the random `Scalar`, or an error if the generation fails.
///
/// # Errors
/// Returns an error if the conversion from bytes to `Scalar` fails.
fn generate_random() -> Result<Scalar, Box<dyn Error>> {
Ok(Scalar::random(&mut OsRng))
}
}
// Implementation of `RandomGenerator` trait for `RistrettoPoint`.
impl RandomGenerator<RistrettoPoint> for RistrettoPoint {
/// Generates a random `RistrettoPoint`.
///
/// # Returns
/// A `Result` containing the random `RistrettoPoint`, or an error if the generation fails.
///
/// # Errors
/// Returns an error if the conversion from bytes to `RistrettoPoint` fails.
fn generate_random() -> Result<RistrettoPoint, Box<dyn std::error::Error>> {
Ok(RistrettoPoint::random(&mut OsRng))
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::chaum_pedersen::constants::EC25519_GROUP_PARAMS;
use crate::chaum_pedersen::test::test_execute_protocol;
use crate::rand::RandomGenerator;
use curve25519_dalek::constants::RISTRETTO_BASEPOINT_POINT;
use curve25519_dalek::ristretto::CompressedRistretto;
// Test case to ensure round-trip conversion for `RistrettoPoint`.
#[test]
fn ristretto_point_conversion_round_trip() {
let original = RISTRETTO_BASEPOINT_POINT * Scalar::generate_random().unwrap();
let bytes = RistrettoPoint::convert_to(&original);
let recovered = RistrettoPoint::convert_from(&bytes).unwrap();
assert_eq!(original, recovered);
}
fn serialize_ristretto_point(point: &RistrettoPoint) -> String {
// Compress the RistrettoPoint
let compressed_point = point.compress();
// Convert the CompressedRistretto to a byte array
let bytes = compressed_point.to_bytes();
// Convert the byte array to a hex string
hex::encode(bytes)
}
/// Tests the commitment calculation in the Elliptic Curve Chaum-Pedersen protocol.
#[test]
fn test_elliptic_curve_commitment() {
// Initializing random number generator.
let mut rng = OsRng;
// Creating a secret value x.
let x = Scalar::from(3u32);
// Generating random points g and h on the Ristretto curve.
let g = RISTRETTO_BASEPOINT_POINT * Scalar::random(&mut rng);
let h = RISTRETTO_BASEPOINT_POINT * Scalar::random(&mut rng);
// Serializing and printing the points g and h.
let hex_str = serialize_ristretto_point(&g);
println!("Serialized point: {}", hex_str);
let hex_str = serialize_ristretto_point(&h);
println!("Serialized point: {}", hex_str);
// Setting up the group parameters.
let params = GroupParams::<RistrettoPoint> {
g: g.clone(),
h: h.clone(),
p: RISTRETTO_BASEPOINT_POINT,
q: RISTRETTO_BASEPOINT_POINT,
};
// Calculating the commitment.
let (cp, _) = Curve25519ChaumPedersen::commitment(¶ms, &x);
let (y1, y2, _, _) = cp;
// Verifying the correctness of the commitment.
assert_eq!(y1, params.g * x);
assert_eq!(y2, params.h * x);
}
/// Tests the verification process in the Elliptic Curve Chaum-Pedersen protocol.
#[test]
fn test_elliptic_curve_random_point_verification() {
// Initializing random number generator.
let mut rng = OsRng;
// Creating a secret value x.
let x = Scalar::from(3u32);
// Generating random points g and h on the Ristretto curve.
let g = RISTRETTO_BASEPOINT_POINT * Scalar::random(&mut rng);
let h = RISTRETTO_BASEPOINT_POINT * Scalar::random(&mut rng);
// Setting up the group parameters.
let params = GroupParams::<RistrettoPoint> {
g: g.clone(),
h: h.clone(),
p: RISTRETTO_BASEPOINT_POINT,
q: RISTRETTO_BASEPOINT_POINT,
};
// Executing the protocol and asserting the verification is successful.
assert!(test_execute_protocol::<Curve25519ChaumPedersen>(¶ms, &x));
}
#[test]
fn test_elliptic_curve_standard_verification() {
// Initializing random number generator.
// Creating a secret value x.
let x = Scalar::from(3u32);
// Setting up the group parameters.
let params = EC25519_GROUP_PARAMS.to_owned();
// Executing the protocol and asserting the verification is successful.
assert!(test_execute_protocol::<Curve25519ChaumPedersen>(¶ms, &x));
}
#[test]
fn test_fail_elliptic_curve_verification() {
let mut rng = OsRng;
// Setting up the group parameters.
let params = EC25519_GROUP_PARAMS.to_owned();
let x = Scalar::random(&mut rng);
let (cp, _) = Curve25519ChaumPedersen::commitment(¶ms, &x);
let c = Curve25519ChaumPedersen::challenge(¶ms);
let fake_response = Scalar::generate_random().unwrap();
let verified = Curve25519ChaumPedersen::verify(¶ms, &fake_response, &c, &cp);
assert!(!verified);
}
#[test]
fn test_fail_elliptic_curve_verification_with_ec_params() {
let mut rng = OsRng;
// Setting up the group parameters.
let params = EC25519_GROUP_PARAMS.to_owned();
// Creating a secret value x.
let x = Scalar::random(&mut rng);
let (cp, _) = Curve25519ChaumPedersen::commitment(¶ms, &x);
let c = Curve25519ChaumPedersen::challenge(¶ms);
let fake_response = Scalar::generate_random().unwrap();
let verified = Curve25519ChaumPedersen::verify(¶ms, &fake_response, &c, &cp);
assert!(!verified);
}
/// Tests the serialization and deserialization of Ristretto points, simulating sending over a wire.
#[test]
fn test_wire_serialization() {
// Generating a random scalar and a random Ristretto point.
let scalar = Scalar::random(&mut rand::thread_rng());
let point = RistrettoPoint::random(&mut rand::thread_rng());
// Multiplying the point by the scalar.
let compressed_point = point * scalar;
// Converting the point to bytes for sending.
let bytes_to_send = compressed_point.compress().to_bytes();
// Simulating sending bytes across the wire.
let received_bytes = bytes_to_send;
// On the receiving end, deserializing the bytes back into a CompressedRistretto.
let received_compressed_point = CompressedRistretto::from_slice(&received_bytes);
// Optionally, decompressing it back to a RistrettoPoint if needed.
let received_point = received_compressed_point
.unwrap()
.decompress()
.expect("Invalid point received");
// Asserting that the received point is equal to the original compressed point.
assert_eq!(received_point, compressed_point);
}
// Test case to ensure round-trip conversion for `Scalar`.
#[test]
fn scalar_conversion_round_trip() {
let original = Scalar::generate_random().unwrap();
let bytes = Scalar::convert_to(&original);
let recovered = Scalar::convert_from(&bytes).unwrap();
assert_eq!(original, recovered);
}
// Test case to check for proper error handling with invalid byte length for `Scalar`.
#[test]
fn scalar_invalid_bytes_length() {
let bytes: Vec<u8> = vec![0; 64]; // Invalid length for Scalar conversion
let result = Scalar::convert_from(&bytes);
assert!(result.is_err());
}
}